Ritonavir - An effective drug against HIV

JK Grover*
Vikrant Vats

SS Rathi*

ABSTRACT

The new HIV protease inhibitors are likely to represent a major advance in the treatment of HIV infection, particularly when used in combination with other antiretroviral agents. The addition of ritonavir to the standard drug regimen of patients with HIV infection has resulted in decreased mortality and has been shown to slow down the clinical progression of disease as compared to placebo recipients. Although the drug was well tolerated and was not associated with any serious adverse reaction, data from long-term trials is eagerly awaited to corroborate the safety of ritonavir. The problem with other anti-retroviral agents is the emergence of resistance, which is responsible for their waning efficacy. Although resistance has been seen with ritonavir, it arises as a result of multiple mutations, which produces a stepwise increment in resistance. This very complex pattern of resistance explains the absence of rapid appearance of resistant mutants with ritonavir. Moreover, the resistance between ritonavir and saguinavir is not over-lapping, and therefore the combination of these drugs is an attractive proposition especially as ritonavir improves the bioavailability of saguinavir. As such, ritonavir may become an important component of the combination regimen to treat advanced as well as less advanced HIV infection.

Keywords: Ritonavir; anti-retroviral agents; HIV infection.

INTRODUCTION

Ritonavir is a protease inhibitor (approved for the treatment of HIV infection) which has HIV-1 resistance profile similar to that of indinavir but different from saquinavir. In clinical trials in patients with HIV-1 infection, ritonavir caused an increase in CD4+ cell

counts with a marked reduction in viral load within 2 weeks of treatment. Results of 2 small clinical trials have been encouraging. Triple therapy of ritonavir plus zidovudine along with lamividine or zalcitabine has been shown to reduce HIV viremia to below detectable levels in most patients with acute HIV

^{*} All India Institute of Medical Sciences, New Delhi, India.

infections and in some patients with advanced HIV infection.

Aspartic protease is a critical enzyme that is involved in processing the products of the gag and gagpol genes into the functional core proteins and viral enzymes of HIV. Inhibition of HIV protease results in the release of noninfectious immature viral particles.^{1,2}

PHARMACODYNAMICS

In vitro anti-HIV activity

- In a human T cell line (MT-4), ritonavir and zidovudine inhibited 4 laboratory strains of HIV-1 at similar concentrations. However, ritonavir was 8 times less potent than zidovudine against HIV-2 strain.²
- The selectivity of ritonavir against HIV aspartic protease as compared to human aspartic protease was more (≥ 500 folds).
 The selectivity index (TC50/IC50) of ritonavir was approximately 1000.²

Clinical studies of anti-HIV activity

- In a study involving 20 patients, ritonavir caused a significant decrease in plasma HIV RNA levels. A two-week therapy with ritonavir 600 and 200 mg/day reduced the plasma HIV RNA levels by 11 and 275 folds respectively.³
- In another study, 17 out of 21 patients exhibited a drop in HIV RNA load from 2,64,600 copies/ml to below the limits of detection (10000 copies/ml). Moreover, ritonavir elevated the median CD 4+ count from 153 to 404 cells/µl after 2 to 14 (mean 6) weeks of

therapy. Simultaneous increase in CD8 + lymphocyte count also occurred as evident by elevation from 813 cells/µl at baseline to a peak of 1781 cells/µl. These changes in CD4+ and CD8+ lymphocyte suggested a decrease in viral load and antigenic stimulation.⁴

PHARMACOKINETIC PROFILE

The extent of oral absorption is high and is not affected by food. The clinically relevant $t_{1/2}$ ß is about 3 to 5 hours. Because of autoinduction, plasma concentrations generally reach the steady state 2 weeks after the start of administration. pharmacokinetics of ritonavir are relatively linear after multiple doses, with apparent oral clearance averaging 7 to 9 L/h.5 Ritonavir probably has a saturable metabolism as evident by the results of a fasting single dose study in 16 patients with HIV infection in which ritonavir 100 to 1000 mg showed a nonlinear pharmacokinetic profile. Within the clinical concentration range, ritonavir is approximately 98 to 99% bound to plasma proteins, including albumin and alpha 1-acid glycoprotein. Cerebrospinal fluid (CSF) drug concentrations are low in relation to total plasma concentrations. Ritonavir is primarily metabolized by cytochrome P450 (CYP) 3A isoenzymes and, to a lesser extent, by CYP2D6. Four major oxidative metabolites have been identified in humans, but are unlikely to contribute to the antiviral effect.

About 34% and 3.5% of a 600 mg dose is excreted as unchanged drug in the feaces and urine, respectively. Ritonavir

is eliminated primarily by hepato-biliary process. ⁶ For details see table I.

Table I

Pharmacokinetics Parameters 7,8	Values
Maximum Plasma concentration after 600 mg twice daily for 3 weeks	11.2 mg/L
Time to maximum concentration	4 hr
Elimination half life	3-5 hr
Dosage & administration	Oral 600 mg twice daily

THERAPEUTIC TRIALS

Monotherapy

Two multi-centric, randomized, doubleblind trials evaluated monotherapy with oral ritonavir (600-1200 mg/day) in patients with a CD4+count of ≤50 cells/µl. 4 weeks of therapy, plasma HIV RNA load considerably reduced in recipients.^{7,9} In those who completed 12 weeks of therapy with this drug (i.e. 38%), the levels of plasma HIV RNA were reduced to limit of detection below the copies/ml). There was a significant increase in CD4 + cell count after four weeks of therapy including increase of > 200 cells/µl in some patients.^{7,9} However, after 4-12 weeks of treatment, HIV RNA levels returned towards baseline but this was less pronounced in patients receiving higher doses of ritonavir (1200 mg/day). These results can be interpreted in the liaht emerging resistance to ritonavir monotherapy at suboptimal dosage. 7,10

Combination therapy 8,11-14

In the phase III double blind trial, 1090 subjects received either ritonavir 600 mg (n=543) twice daily or placebo (n=547). Both the groups also received the current reverse transcriptase inhibitor treatment. Primary end points of the study were death, occurrence of AIDS defining illness, esophageal candidiasis, chronic hepatic ulcer and reoccurrence Pneumocystis carinii pneumonia. The subjects were followed up for a mean of 6.1 (0.2-7.7) months. Twenty-six subjects (4.8%) receiving ritonavir and 46 (8.4%) receiving placebo died. The overall risk reduction was by 43%. The reduction in the incidence of AIDS defining illness or death was 56% (15.7 Vs 33.1%, P<0.001) in the ritonavir group, 11,12 Health related quality of life (EuroQuol. Score) declined during the first week of ritonavir therapy but then gradually increased significantly after 20 weeks to 3.6 points, better than placebo group (P<0.05).14

Other clinical trials

In another clinical trial, 356 untreated patients received ritonavir mg twice daily or zidovudine 200 mg 3 times daily, either as monotherapy or in combination. As compared to zidovudine monotherapy or zidovudine ritonavir combination, the decrease in HIV **RNA** level more in patients treated with ritonavir In comparison with zidovudine alone. the monotherapy, elevation in the CD4+cell count was more in ritonavir

monotherapy and combination groups. 15-17

- HIV was undetectable in 11 out 12 men newly infected with HIV-1 who received 120 days of therapy with ritonavir (1200 mg/day), zidovudine (600 mg/day) and lamivudine (300 mg/day).¹⁸
- Patients with previously untreated advanced HIV infection (CD4 + count < 250 cells/µI) received triple therapy with ritonavir 1200 mg/day, zidovudine 600 mg/day and zalcitabine 2.25 mg/day. Mean CD4+counts rose from 170 cells/µI (baseline, n=32) to 327 cells/µI (after one year of treatment, n=17).19
- In a study, lymphocyte reconstitution was evaluated in 44 children (mean age 6.8 years) with HIV after ritonavir monotherapy followed by the addition of zidovudine and didanosine. After 4 weeks of therapy, there was a significant increase in CD4+ and CD8+ cells. CD4+ cells continued to increase, whereas CD8+ cells returned to baseline by 24 weeks. Unexpectedly, there was a significant increase in B cells. increase in lymphocytes after ritonavir therapy occured due to recirculation, as shown by increases in B cells and CD4+, CD45RO and CD8+ cells.20
- In another study, ritonavir was found to be useful in a significant proportion of HIVinfected children by improving the CD4 cell count and viral load.²¹
- In a monocentric retrospective study,
 22 children with a minimum follow-up of
 6 months under triple therapy including

- ritonavir were analyzed for treatment efficacy. At entry, all the patients were protease inhibitor naive and all but two had received previous anti-retroviral therapy during a median period Their initial median CD4+ 5 years. lymphocyte count and viral load were 121 x 10(6)/I and 5.08 log10 copies/ ml, respectively. Median CD4 count increases were of 210 x 10(6)/l, 415 x 10(6)/I, and 472 x 10(6)/I cells at 6, 12, and 18 months, respectively. There were median decreases of 1.14, 0.95, and 1.5 per ml of plasma in log10 concentration of viral RNA at 6, 12, and 18 months respectively. Seven patients maintained an undetectable viral load when under treatment. The introduction of at least one new reverse transcriptase inhibitor at the initiation of triple therapy correlated significantly with a greater viral suppression. 22
- Results of another multi-centric, randomized and open-label clinical trial conducted to evaluate the safety and antiretroviral activity of ritonavir and saquinavir combination therapy in patients with HIV infection show that ritonavir (400 mg) combined with saquinavir (400 mg) twice daily with addition the selective of reverse transcriptase inhibitors is the besttolerated regimen of four dose-ranging regimens and is equally as active as the higher dose combinations in HIV-positive patients without previous protease inhibitor treatment.23

- Results of a study advocate the use of four-drug combination including 2 protease inhibitors (ritonavir and saquinavir) as a first line of treatment in patients with low CD4 cell counts.²⁴
- In the phase I/II study, 48 HIV-infected children (median age, 7.7 years; range, 0.5 to 14.4 years) were given either of the 4 dose levels of ritonavir oral solution (250, 300, 350, and 400 mg/m given every 12 hours) were evaluated in two age groups (</=2 years, >2 years). Ritonavir was administered alone for the first 12 weeks and then in combination zidovudine and/or with didanosine. Clinical and laboratory parameters were monitored every 2 to 4 weeks. Ritonavir was well absorbed at all dose levels, and plasma concentrations reached a peak 2 to 4 hours after a dose. CD4 cell counts increased by a median of 79 cells/mm³ after 4 weeks of monotherapy and were maintained throughout the study. Plasma HIV RNA decreased by 1 to 2 log10 copies/ml within 4 to 8 weeks of ritonavir monotherapy, this level was sustained in patients enrolled at the highest dose level of 400 mg/m for the 24-week period. 25
- In a study, the effect of 12 weeks of treatment with zidovudine, lamivudine and ritonavir studied on immune was reconstitution in 44 persons with moderately advanced HIV-1 infection. After treatment, plasma HIV-1 RNA fell a median of 2.3 logs (P<.0001) while circulating numbers of naive and memory CD4 T lymphocytes (P<.001),

- naive CD8 T lymphocytes (P<.004), and B lymphocytes (P<.001) increased. Improved lymphocyte proliferation to certain antigens and a tendency to improvement in delayed-type hypersensitivity also were seen. ²⁶
- In an international. multi-centric. placebo-controlled randomized and clinical trial, 1090 HIV-infected patients with CD4 cell counts < or $= 100 \times 10(6)/l$ randomized to were ritonavir continued treatment with as many as two nucleoside agents (n=543) or placebo and continued treatment with as many as two nucleoside agents (n=547). related quality of life was measured at baseline and after 3 and 6 months of treatment using the Medical Outcomes Study HIV Health Survey (MOS-HIV) and HIV-related symptoms scale. The two treatment groups were comparable on baseline CD4 cell counts, demographic characteristics, and MOS-HIV and HIV symptom subscale scores. After statistically months, significant differences (P<0.03) favouring the ritonavirtreated patients were seen on the physical health summary, mental health summary, and general health perceptions, social function, mental health, energy/fatigue subscales. After 6 months of ritonavir therapy, significant differences were observed on physical health and mental health summary scores (P<0.001), and on measures of general health perceptions, physical function, role function, social function, cognitive function, mental health, health distress,

energy/fatigue, and overall ratings of quality of life (P<0.01). Ritonavir-treated patients reported fewer fever symptoms and neurologic symptoms than the placebo group after 6 months of treatment (P<0.005). ritonavir therapy, Thus, combined with other anti-retroviral treatments, significantly contributes to maintenance of functioning and well-being over at least 6 months in patients with advanced HIV disease. 27

- Current recommendations suggest that therapy be anti-retroviral considered in any patient with a viral load higher than 5,000 to 20,000 copies per ml, regardless of the CD4+ count. Selection of the combination regimen must take into account the patient's prior history of anti-retroviral use, the side effects of these agents and drug-drug interactions that occur among these agents and with other drugs as well. Because of the potential for viral resistance, nonnucleoside reverse transcriptase inhibitors and protease inhibitors should only be used in combination therapy. Anti-retroviral agents are rapidly being developed and approved, so physicians must make increasingly complex treatment decisions about medications with which they may be unfamiliar.²⁸
- An isolated case report published in 1998 has described complete clinical resolution of mucocutaneous Kaposi's sarcoma (KS) lesions with ritonavir therapy.²⁹

VIRAL RESISTANCE

Viral resistance has been observed after continuous use as a result of mutation of HIV protease, beginning at amino acid 82. Although the initial mutants were still sensitive to the drug, the secondary (involving 54, 71 and 36 amino acids) and tertiary (involving 20, 33, 46, 84 amino acids) mutants were progressively resistant to ritonavir. The results suggested that multiple mutations were required for the development of high level resistance. 30

The pattern of resistance between ritonavir and saquinavir is divergent, is evident by the fact that mutations causing increased resistance to ritonavir also bestowed increased resistance to indinavir but not to saquinavir.31 Clinical isolates from 4 patients treated with indinavir 1 year exhibited increased resistance to all protease inhibitors examined VX-478), 32 and (Saguinavir, telinavir Moreover, mutations known to increase resistance to ritonavir were present in the clinical isolates from these patients.32

DRUG INTERACTIONS

In vitro, ritonavir is a potent inhibitor of CYP3A metabolism (eg, clarithromycin, ketoconazole. rifabutin, and other HIV protease inhibitors, including indinavir, saquinavir and nelfinavir) with effects ranging from an increase of 77% to 20-fold in humans. It also inhibits CYP2D6-mediated metabolism, but to a significantly lesser extent (145% increase in desipramine AUC). 33,34 Since ritonavir is also an inducer of several metabolizina enzymes [CYP1A4. glucuronosyl transferase (GT), and possibly

CYP2C9 and CYP2C19], the magnitude of drug interactions is difficult to predict, particularly for drugs that are metabolized by multiple enzymes or have low intrinsic clearance by CYP3A. For example, the AUC CYP3A substrate of methadone slightly decreased and alprazolam was unaffected. Other CYP3A inhibitors minimally affect Ritonavir, including ketoconazole. Rifampicin (rifampin), a potent CYP3A inducer, decreased the AUC of ritonavir by only 35%. The degree and duration of suppression of HIV replication is significantly correlated with the plasma concentrations. Thus, the large increase in the plasma concentrations of other protease inhibitors when co-administered with ritonavir forms the basis of rational dual protease inhibitor regimens, providing patients with 2 potent drugs at significantly reduced doses and less frequent dosage intervals.5

Concomitant administration of ritonavir and ergotamine may result in severe ergotism.³⁵ No dose adjustments for ritonavir are presently recommended during concomitant fluoxetine administration. See table 2 for details.

Table II: Drugs likely to interact with Ritonavir are and therefore should be used with caution in conjunction with ritonavir are^{8,37-39}

Alprazola m	Amfebutamon e	Amiodaron e	Astemizole	Bepridil
Cisapride	Clorazepate	Clozapine	Diazepam	Encainide
Estazolam	Ergotamine	Ergotamine Flecainide Fluraze		Midazolam
Pethidine	Pimozide	Piroxicam	Piopafenon e	Quinidine
Rifabutin	Terfenadine	Triazolam	Zolpidem	Dihydrogotamin e
Quinine	Ketoconazole	Itraconazol e	Loratidine	Dexamethason e
Methadone	Nefazadone	Sertraline		

Both in vitro and in vivo studies

- Ritonavir causes marked inhibition of the metabolism of other protease inhibitors in vitro preparations of rat and human liver microsomes. In rats, co-administration of ritonavir increases the AUC of saquinavir, nelfinavir, indinavir and VX478 by 36, 10, 8 and 8 folds respectively.⁴⁰
- In single and multi dose clinical trials in healthy volunteers, ritonavir increased the AUC and C_{max} of saquinavir.⁴¹ Studies with saquinavir (SQV) and small doses of ritonavir (RTV) suggest that single daily doses of saquinavir (1600 mg) may result in sufficient SQV serum levels throughout an interval of 24 h when given along with 200 mg ritonavir. However, due to high variability seen with all protease inhibitors it is recommended that continuous therapeutic drug monitoring of serum trough levels should be done.
- No clinical significant interactions were seen with didanosine, fluconazole or zidovudine when tested in patients

with HIV infections or healthy volunteers. 42-44

ADVERSE DRUG REACTIONS

- Adverse events associated with ritonavir are generally reversible and tolerable. 7,9 In a large double blind trial (n-1088), patients received either ritonavir (n=41) or placebo (n=547) in conjunction with their baseline anti-retroviral agents. Gastrointestinal and neurological adverse events possible or unknown relationships were most frequently reported after 2.4 months of treatment.8
- There were 17% and 6% withdrawal from treatment due to adverse reactions receiving ritonavir (600 mg/day) or placebo respectively.¹¹ However, most withdrawals occurred in the period of drug initiation. The withdrawal rate in patients who continued receiving ritonavir was similar to the rate in placebo recipient's.¹⁵
- Laboratory abnormalities associated with ritonavir therapy included asymptomatic elevation of triglycerides and hepatic transaminase.⁷⁻⁹ Although a causal relationship was not established, ritonavir when given to approximately 15 patients in Europe with haemophilia receiving HIV protease inhibitors including ritonavir were associated with the same spontaneous bleeding events.⁴⁵
- Acute pancreatitis has been reported as a complication of ritonavir therapy in a patient with AIDS.⁴⁶

 Ritonavir has been reported to cause acute renal failure in 8 patients after 3-21 days of therapy.^{47,48}

REFERENCES

- Moyle G, Gazzard B. Current knowledge and future prospects for the use of HIV protease inhibitors. *Drugs* 1996; 51 (5): 701-12.
- Kempf DJ, Marsh KC, Denissen JF, et al. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci USA 1995 Mar 28; 92: 2484-8.
- Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 12 (373): 123-6.
- Kelleher AD, Carr A, Zaunders J. Alterations in the immune response of human immunodeficiency virus (HIV) infected subjects treated with an HIVspecific protease inhibitors, ritonavir. *J Infect Dis* 1996: 173: 321-9.
- Hsu A, Granneman GR, Bertz RJ. Ritonavir: Clinical pharmacokinetics and interactions with other anti-HIV agents. *Clin Pharmacokinet* 1998; 35 (4): 275-91.
- Hsu A, Granneman R. Rykiewicz K, et al. Kinetics of ABT-538 a protease inhibitor, in humans after single oral rising doses [abstract]. Pharm Res 1994; 11: 400 (suppl).
- 7. Danner SA, Carr A, Leonard JM. A short term study of the safety, pharmacokinetics and efficacy of ritonavir, an inhibitor of HIV-I protease. *N Engl J Med* 1995; **7** (333): 1528-33.
- 8. NorvirTM (Ritonavir capsules) (Ritonavir oral solution). Prescribing Information. Abbott Laboratories, Chicago, Illinois, USA 1996.
- Markowitz M, Saan M, Powderly WG, et al. A preliminary study of ritonavir an inhibitor of HIV-I protease to treat HIV-I infection. N Engl J Med 1995; 7 (333): 1534-9.
- Lea AP, Faulds D. Ritonavir. *Drugs* 1996; **52** (4): 541-48.
- Cameron B, Health-Chiozzi M, Kravcik S, et al. Prolongation of life and prevention of AIDS in advanced HIV immunodeficiency with ritonavir [abstract]. Third Conference on Retroviruses and

- Opportunistic Infections; 1996 Jan 28: Washington DC, 162.
- Cameron DW, Heath Chiozzi M, Kravcik KS, et al.
 Prolongation of life and prevention of AIDS complications in advanced HIV with ritonavir [abstract], XI International Conference on AIDS: 1996 July 7: Vancouver.
- Heath-Chiozzi M, Leonard J, Henry D, et al. Anti-HIV activity and lymphocyte surrogate marker response dynamics to ritonavir therapy in advanced HIV immunodeficiency [abstract]. Third Conference on Retroviruses and Opportunistic Infections; 1996 Jan 28th: Washington DC.
- Nebulsi A, Revicki D, Conway D, et al. The use of Euro quol preference scale in AIDS. Results from two clinical trials [abstract]. XI International Conference on AIDS; 1996 July 7: Vancouver.
- 15. Abbott NovirTM for HIV reduces death risk (40%) and disease progression risk (55%) in advanced HIV; FDA approves ritonavir. March 1 record 72 days. FDC Rep Pink Sheet 1996 Mar 4: 7-8.
- US NDA for Abbott's ritonavir. Scrip 1996 Jan 2/25:2090/91:23.
- 17. Swift US approval for Abbott's Norvir. Scrip 1996 Mar 8: 2109, 17.
- Markowitz M, Cao Y, Hurley A, et al. Triple therapy with AZT3TC and ritonavir in 12 subjects newly infected with HIV-4 [abstract]. XI International Conference on AIDS; 1996 July 7: Vancouver.
- Mathez D, De Truchis P, Hore\in et al. A triple combination of ritonavir+AZT+DDC as a first line treatment of patients with AIDS: update [poster]. XI International Conference on AIDS. 1996 Jul 7: Vancouver.
- Sleasman JW, Nelson RP, Goodenow MM, et al. Immunoreconstitution after ritonavir therapy in children with human immunodeficiency virus infection involves multiple lymphocyte lineages. Pediatr 1999; 134 (5): 597-606.
- Horneff G, Adams O, Wahn V. Preliminary experiences with ritonavir in children with advanced HIV infection. *Infection* 1999; 27 (2): 103-7.
- Thuret I, Michel G, Chambost H, et al. Combination antiretroviral therapy including ritonavir in children infected with human immunodeficiency. AIDS 1999; 13 (1): 81-7.

- Cameron DW, Japour AJ, Xu Y, et al. Ritonavir and saquinavir combination therapy for the treatment of HIV infection. AIDS 1999; 13 (2): 213-24.
- 24. Michelet C, Bellissant E, Ruffault A, *et al.* Safety and efficacy of ritonavir and saquinavir in combination with zidovudine and lamivudine. *Clin Pharmacol Ther* 1999; **65** (6): 661-71.
- 25. Mueller BU, Nelson RP Jr, Sleasman J, et al. A phase I/II study of the protease inhibitor ritonavir in children with human immunodeficiency virus infection. *Pediatrics* 1998; **101**: 335-43.
- Lederman MM, Connick E, Landay A, et al. Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. J Infect Dis 1998; 178 (1): 70-9.
- Cohen C, Revicki DA, Nabulsi A, et al. A randomized trial of the effect of ritonavir in maintaining quality of life in advanced HIV disease. Advanced HIV Disease Ritonavir Study Group. AIDS 1998 Aug 20; 12 (12): 1495-502.
- 28. Maenza J, Flexner C. Combination antiretroviral therapy for HIV infection. *Am Fam Physician* 1998; **57** (11): 2789-98.
- Diz Dios P, Ocampo Hermida A, Miralles Alvarez C, et al. Regression of AIDS-related Kaposi's sarcoma following ritonavir therapy. Oral Oncol 1998; 34 (3): 236-8.
- Molla A, Korneyeva M, Gao Q, et al. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Natur Med 1996; 2 (7): 760-6.
- Markowitz M, Mo H, Kempf DJ, et al. Selection and analysis of human immunodeficiency virus type I variants with increased resistance to ABT-538, a novel protease inhibitor. J Virol 1995 Feb; 69: 701-6.
- 32. Condra JH, Schlief WA, Blahy OM, *et al.* In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors [letter]. *Nature* 1995 Apr 6; **374**: 569-71.
- Kumar GN, Rodrigues D, Buko AM, et al. Cytochrome P450-mediated metabolism of the HIV-I protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 1996; 227 (1): 423-31.

- Kumar GN, Grabowski B, Lee R, et al. Hepatic drug-metabolizing activities in rats after 14 days of oral administration of the human immunodeficiency virus-type J protease inhibitor ritonavir (ABT-538). Drug Metab Dispos 1996; 24 (5): 615-7.
- Liaudet L, Buclin T, Jaccard C, Eckert P. Drug points: severe ergotism associated with interaction between ritonavir and ergotamine. BMJ 1999; 318 (7186): 771.
- 36. Ouellet D, Hsu A, Qian J, et al. Effect of fluoxetine on pharmacokinetics of ritonavir. *Antimicrob Agents Chemother* 1998; **42** (12): 3107-12.
- Cato A, Cavannaugh JH, Shi A, et al. Assessment of multiple doses of ritonavir on the pharmacokinetics of rifabutin [abstract]. XI International Conference on AIDS: 1996 Jul 7: Vancouver 89.
- Altarac D, Koll BS, Management if the patient with human immunodeficiency virus disease. In: Rakel RE, editor Conn's Current Therapy 48th ed. Philadelphia: WB Saunders Company, 1996: 47-66.
- 39. Oullet D, Hsu A, Granneman GR, *et al.* Assessment of the pharmacokinetic interaction between ritonavir ® and clarithromycin ©. *Clin Pharmacol Ther* 1996; **59** (2): 143.
- 40. Kempf D, Marsh K, Denissen J, et al. Coadministration with ritonavir enhances the plasma levels of HIV protease inhibitors by inhibition of cytochrome P450 [abstract]. Third conference on Retinoviruses and Opportunistic Infections; 1996 Jan 28: Washington DC, 79.
- 41. Hsu A, Granneman GR, Sun E, *et al.* Assessment of single and multiple dose interactions between ritonavir and saquinavir [abstract], XI International Conference on AIDS: 1996 Jul 7: Vancouver.
- Cato A, Quan J, Carohers L, et al. Evaluation of the pharmacokinetic infection between ritonavir and didanosine [abstract]. Clin Pharmacol Ther 1996; 59 (2): 144.
- 43. Cato A, Hsu A, Granneman R, et al. Assessment of the pharmacokinetic interaction between HIV-I protease inhibitor ABT-538 and fluconazole [abstract].

- 35th International Conference on Antimicrobial Agents and Chemotherapy: 1995 Sep 17: 211.
- 44. Cato A, Hsu A, Granneman E, et al. Assessment of the pharmacokinetic interaction between HIV-I protease inhibitor ABT-538 and zidovudine [abstract]. 35th International Conference on Antimicrobial Agents and Chemotherapy: 1995 Sep 17: 211.
- FDA. HIV protease inhibitors and patients with haemophilla. Letter to Health care Providers FDA: 1996. Jul 17.
- 46. Mirete G, Masia M, Gutierrez F, et al. Acute pancreatitis as a complication of ritonavir therapy in a patient with AIDS. Eur J Clin Microbiol Infect Dis 1998; 17 (11): 810-1.
- Deray G, Bochet M, Katlama C, Bricaire F. Nephrotoxicity of ritonavir. *Presse Med* 1998; 27 (35): 1801-3.

48. Bochet MV, Jacquiaud C, Valantin MA, *et al.* Renal insufficiency induced by ritonavir in HIV-infected patients. *Am J Med* 1998; **105** (5): 457.

12 /	Grover	et al	- Ritonavir -	An effective	drug against HIV
------	--------	-------	---------------	--------------	------------------