Introduction

This is a study conducted in mobile surgical camp at a district hospital set up. The surgeries were all vaginal hysterectomies, performed under subarachnoid block (SAB). The study was conducted with the aim of providing a reliable method of post operative analgesia in a camp setup. The routine method of pethidine and phenargan for analgesia is often administered inadequately in these setups and the patients have inadequate pain relief.

For these reasons, the intrathecal administration of morphine along with bupivacaine at the time of the Sub arachnoid block, is a good choice for postoperative analgesia. It avoids the frequent administration of the analgesic drugs in the post op period.

Intrathecal morphine is widely used for analgesia following operations under spinal anesthesia. Because of the low lipid solubility of morphine, it is retained in the cerebro spinal fluid, prolonging the duration of action as well as promoting its cephalad spread. It not only acts on the opioid receptors in the substantia gelatinosa of the dorsal horn of the spinal cord but also exerts a supraspinal effect to provide analgesia². When given intrathecally, it has been shown to provide analgesia for upto 24hour.¹

Morphine has the advantage of selectivity of analgesia in the absence of motor and sympathetic blockade, which facilitates ambulation while minimizing the risk of hypotension. Intrathecal morphine requires 45 to 60min to achieve peak effect. Intrathencal bupivacaine provides analgesia till that period.³

Morphine has got annoying and occasionally serious side effects and complications including pruritus, nausea and vomiting, urinary retention, somnolence and respiratory depression.⁴

The nausea and vomiting may result either from rostral spread of the drug in CSF to the chemoreceptor trigger zone or the vascular uptake and delivery to the vomiting center and CTZ.⁴

Intrathecal morphine causes urinary retention by inhibiting sacral parasympathetic outflow, which results in relaxation of the bladder detrusor muscle and inability to relax the sphincters. It is not a troublesome problem in CS and gynecological procedures as urinary catheters are left in situ for at least 24hrs.

The most serious side effect of intrathecal morphine is respiratory depression. The incidence of ventilatory depression requiring intervention after conventional dose of neuraxial opioids is about 1%, which is the same as that
Use of intrathecal morphine for analgesia

after the conventional doses of IV or IM opioids. Although intrathecal morphine has been used worldwide in different doses and different combinations all over the world safely, we haven’t been able to use it in our setup because of lack of experience with it.

Materials and methods

All the patients coming for operation in the camp were recorded in the study. The randomization was done in empirical basis: the patients coming in the first 4 days of the camp were given intrathecal morphine along with bupivacaine during the sub arachnoid blockade and the rest were given bupivacaine alone as per the regular practice. A total of 89 patients were recorded and followed. Among them, 61 were given intrathecal morphine and the rest were given plain bupivacaine only.

All the patients were screened in the out patient clinic for fitness for anesthesia. Some also had blood workups and ECGs done, as felt necessary. After bringing the patients to the operating theatre, intravenous access was opened with 18G cannula and 500ml of ringer lactate was preloaded. They were attached to the monitors, which included ECG, blood pressure monitor and pulse oximeter. SAB was performed with patient in sitting position with 25G Quinke needle.

Drug used 3.2 to 3.5ml of 0.5% bupivacaine in the control group, and the same drug with 150 microgram morphine (morphine diluted in normal saline to 150 microgram/ml) in the study group.

Then the patients were put supine immediately. All the patients were assessed for the level of sensory blockade and most of the patients had a block up to T7, T6. The monitor readings were periodically recorded. Surgery was commenced after satisfactory effect of the SAB. Any significant fall in systolic blood pressure was treated will bolus crystalloid or Mephentermine IV as required. Other interventions like antiemetics and sedation was given as per discretion of the anesthesiologist during the operative period.

Patients were transferred to the postoperative area after the operation. This area was equipped with the emergency drugs and round the clock nursing staffs for observation of the patients.

Postoperative pain was assessed at 2 to 4 hourly and at any time of pain complain. It was graded subjectively and rescue analgesics were given as required. (Pethidine/Phenargan and/ or dictofenac)

Sedation Scores were recorded 2 to 4 hourly for 24 hours.

- Awake 1
- Dozing intermittently 2
- Mostly sleeping 3
- Only awakens when aroused 4

Time for first administration of supplemental analgesic from the time of administration of intrathecal morphine and total analgesic requirement was noted. Any postoperative complications (e.g. surgical bleeding or anaesthetic post dural puncture headache) was noted and managed accordingly.

Statistical analysis was done with the help of SPSS computer program with chi square and Wests wherever appropriate. Help was also taken with the statistician for the same.

Plan for rescue therapies

1. For rescue analgesia 50mg pethidine IM +/- diclofenac 75 mg IM
2. For mild itching Chlorpheniramme maleate (Avil) 25mg IM and for severe itching Naloxone (0.1 0.2mg IV or by titration).
3. For nausea and vomiting, 25mg promethazine (Phenargan) IM +/- metoclopramide 10mg
4. Respiratory depression (sedation score of 3 or 4 and respiratory rate below 8 per minute) Naloxone 0.1 0.2mg IV or by titration.

Results

The patients ranged from 35yrs to 80yrs. The randomization was done according to the serial order of the patients presenting for surgery. Those presenting in the first four days were given intrathecal morphine but the rest were not (Fig. 1).

There was no significant change in the hemodynamics of the two groups, regarding the F1R and BP. It was as expected because the dose of bupivacaine given were not different between the groups (Fig. 2).
Table 2 Need of rescue analgesics

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Mini</th>
<th>Maxi</th>
<th>Mean</th>
<th>SD</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>61</td>
<td>3</td>
<td>22</td>
<td>10.7</td>
<td>7.0</td>
<td>6.9</td>
<td>14.6</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2</td>
<td>10</td>
<td>4.6</td>
<td>1.7</td>
<td>3.9</td>
<td>5.4</td>
<td></td>
</tr>
</tbody>
</table>

Intra thecal morphine

Time for rescue analgesia in the control and the study group shown within 95% Confidence Interval (Fig. 4).

Discussion

This was only a small scale study in the rural camp set up in Nepal. It was an effort to try to see the effects of intrathecal morphine for better pain management of patients postoperatively.

Initial studies used more than 1mg of morphine from the intrathecal route and had many side effects. Later, many clinicians looked at lower doses of intrathecal morphine. Abboud et al’ reported that 0.25 and 0.1 mg doses of intrathecal morphine reduced VAS pain scores after cesarean section by 50% or more for a mean of 27.7 and 18.6 hours respectively. Abouleish et al9 found a mean of 27 hours to first request for additional analgesia after a 0.2mg dose of intrathecal morphine.

Our study also utilizes the mini dose of intrathecal morphine. The study does show a better pain control in the study group compared to the control.

Looking at the need of analgesic, 78.6% in the control group needed pain rescue within 24hours compared to only 24.6% in the morphine group; P value of .000002.

For those in need of rescue analgesics, the mean duration for the need of first rescue analgesic after the initiation of the SAB was 10.7hrs in the morphine group and 4.6hrs in the control group. Time (in hours) of pain rescue (Table 2).

A. Shrestha, B. Pradhan
Use of intrathecal morphine for analgesia

Regarding the untoward effects of intrathecal morphine; the patients were on urinary catheters for >24 hours, so there was no question of urinary retention.

We did not come across any respiratory depression and only a single case of pruritis was seen, which was managed accordingly.

But there was significant more problem of vomiting in the study group and needed antiemetics. A strong antiemetic like metoclopramide or ondansetron given prophylactically may control this effect. Some have also shown good results with intrathecal midazolam and dextromethorphan in controlling morphine induced nausea and vomiting.6,7

Among the other concern, the hemodynamic effects of the intrathecal morphine was not significant in terms of the change in HR, BP and the use of mephentermine. This shows that the intrathecal route of morphine administration does not cause autonomic effects.

The limitation of the study is the small size and lack of blinding. The randomization is not even between the groups in terms of the number of patients.

Acknowledgements

We would like to thank Mr. Prabin Shrestha, statistician, TUTH, for his help with the statistical works to produce this paper.

References


